test Kaleidoscope (part: modular arithmetic),
December 2nd, 2019, 19:00pm-22:00pm, Aletta Jacobshal 02.
Please provide complete arguments for each of your answers. The exam consists of 3 questions. You can score up to 9 points for each question, and you obtain 2 points for free.
In this way you will score in total between 2 and 20 points.
(1) For every integer $n \geq 0$ we write $a_{n}:=\left(7 \cdot 10^{n}-1\right) / 3$. So, for example, $a_{0}=2$ and $a_{1}=23$ and $a_{2}=233$, et cetera.
(a) (3 points.) Show that for every $n \geq 0$ the number a_{n} is an integer, and moreover

$$
2 \mid a_{n} \Longleftrightarrow n=0
$$

(b) (3 points.) Explain why a_{n} is not divisible by 42 , for all $n \geq 0$.
(c) (3 points.) Explain why a_{n} is not divisible by 13 , for all $n \geq 0$.
(2) Given an integer $a>0$, put $n:=a^{2}-a+1$.
(a) (3 points.) Show that $\bar{a}^{-1}=\overline{1}-\bar{a}$ in $(\mathbb{Z} / n \mathbb{Z})^{\times}$.
(b) (3 points.) Show that for every odd integer $m>0$ it holds that $\left(a^{2}-a+1\right) \mid\left(a^{3 m}+1\right)$.
(c) (3 points.) Now take $a=5$, so that $n=21$. Find two distinct solutions (x, y) with x, y in $\mathbb{Z} / 21 \mathbb{Z}$ of the system

$$
\left\{\begin{array}{rlr}
\overline{2} x-y & = & \overline{6} \\
x+\overline{3} y & = & -\overline{4}
\end{array}\right.
$$

Solutions / grading.

(1) (a) a_{n} is an integer: since $10 \equiv 1 \bmod 3$, it follows that $7 \cdot 10^{n} \equiv 7 \cdot$ $1^{n} \bmod 3=7 \bmod 3$ and therefore $7 \cdot 10^{n}-1 \bmod 3=6 \bmod 3=0 \bmod 3$. So $3 \mid 7 \cdot 10^{n}-1$ and hence $\left(7 \cdot 10^{n}-1\right) / 3$ is an integer.

Other solution: use induction: it is true for $n=0$. If for some $n \geq 0$ the number a_{n} is an integer, then $a_{n+1}=\left(70 \cdot 10^{n}-1\right) / 3=\left(63 \cdot 10^{n}+7\right.$. $\left.10^{n}-1\right) / 3=21 \cdot 10^{n}+a_{n}$ which, using the induction hypothesis, is also an integer.

Third solution: note that $a_{n+1}=10 a_{n}+3$. Since a_{0} is an integer, it follows by induction that the other a_{n} (for $n>0$) are integers as well.
(ANY OF THESE SOLUTIONS, OR A SIMILAR ONE: 1 POINT)

Note that a_{n} is even, if and only if $3 a_{n}$ is. Since $3 a_{n}=7 \cdot 10^{n}-1$ equiv 10^{n} $1 \bmod 2$, and 10^{n} is even for $n>0$ and odd for $n=0$, the result follows.

Alternative solution: using $a_{n+1}=10 a_{n}+3$ you see that $a_{n+1} \equiv 1 \bmod 2$, for every $n \geq 0$. Since a_{0} is even, the result follows.
(2 POINTS FOR ANY SOLUTION LIKE THIS)
(b) Since a_{n} is odd for $n>0$, these a_{n} cannot be multiples of 42. And clearly also a_{0} is not divisible by 42 .

Alternative solution: if $42 \mid a_{n}$ then also $42 \mid 3 a_{n}=7 \cdot 10^{n}-1$. The latter number is clearly not a multiple of 7 , and therefore not a multiple of $42=7 \cdot 6$.

Yet another solution: From $a_{n+1}=10 a_{n}+3$ one concludes $a_{n+1} \equiv$ $a_{n} \bmod 3$. Hence all $a_{n} \bmod 3$ are equal, namely $2 \bmod 3$. In particular they are not divisible by 3 , and therefore not by $42=3 \cdot 14$.

One more solution: $\bmod 42$ note that $10 * 23+3 \bmod 42=233 \bmod 42=$ $23 \bmod 42$. Hence the formula $a_{n+1}=10 a_{n}+3$ and $a_{1}=23$ implies $a_{n} \equiv 23 \bmod 42$, for every $n>0$. So these a_{n} are not multiples of 42 , and clearly neither is a_{0}.
(3 POINTS FOR ANY CORRECT AND COMPLETE SOLUTION)
FOR PARTIAL ANSWERS, GIVE POINTS ONLY IF THE ARGUMENT CLEARLY POINTS IN THE DIRECTION OF A CONCEIVABLY CORRECT PROOF...
(c) The sequence $a_{n} \bmod 13$ looks like

$$
\overline{2}, \overline{10}, \overline{12}, \overline{6}, \overline{11}, \overline{9}, . .
$$

(periodic, with period 6), as one computes, e.g., using the formula $a_{n+1}=$ $10 a_{n}+3$. As the residue class $0 \bmod 13$ does not occur, none of the a_{n} is divisible by 13.
(3 POINTS FOR ANY CORRECT AND COMPLETE SOLUTION)
(2) (a) $(\overline{1}-\bar{a}) \cdot \bar{a}=\overline{a-a^{2}}=\overline{1}$ (since $n \mid\left(a-a^{2}-1\right)$). This shows that \bar{a} is invertible, with inverse $\overline{1}-\bar{a}$.
(2 POINTS FOR THE CALCULATION, 1 POINT FOR THEN REMARKING THAT INDEED WE HAVE THE CORRECT INVERSE. IN TOTAL 1 POINT FOR ONLY SHOWING CORRECTLY THAT $\operatorname{gcd}(a, n)=1$. Note THAT THIS CAN ALSO BE SOLVED VIA AN APPROPRIATE EXTENDED GCD CALCULATION).
(b) Note that $\bar{a}^{3}=\bar{a} \cdot \overline{a^{2}}=\bar{a} \cdot \overline{a-1}=\overline{a^{2}-a}=\overline{-1}$. Hence for odd $m>0$ it follows that ${\overline{a^{3}}}^{m}=\overline{-1}^{m}=\overline{-1}$. This means $a^{3 m}+1$ is divisible by $n=a^{2}-a+1$.

Other solution: note that $a^{6}-1=(a+1)(a-1)\left(a^{2}+a+1\right)\left(a^{2}-a+1\right)$. For $m=1$ the divisibility holds since $a^{3}+1=(a+1)\left(a^{2}-a+1\right)$. If it holds for some odd $m>0$, then the next odd number is $m+2$, and $a^{3(m+2)}+1=a^{6} \cdot a^{3} m+1=\left(a^{6}-1\right) a^{3 m}+\left(a^{3 m}+1\right)$. By what we remarked above and by the induction hypothesis, both terms are divisible by n. This finishes the proof by induction.
(3 POINTS FOR ANY CORRECT AND COMPlETE SOlution. Only 1 POINT IF, E.G., MERELY THE CASE M=1 IS DONE.)
(c) Substituting either $y=\overline{2} x-\overline{6}$ or $x=-\overline{4}-\overline{3} y$ in the 'other' equation, one is left with, e.g., $x+\overline{3}(\overline{2} x-\overline{6})=-\overline{4}$. This can be rewritten as $\overline{7} x=\overline{14}$. So we look for integers x such that $21 \mid(7 x-14)$, which simply means $3 \mid(x-2)$. Two solutions are $x=2$ and $x=5$, with corresponding y respectively -2 and 4.
(-1 FOR A CALCULATION ERROR, -2 IF ONLY ONE SOLUTION IS FOUND. -1 IF it is not clear whether the given solutions are distinct MODULO 21)

