TEST KALEIDOSCOPE (PART: MODULAR ARITHMETIC), December 2nd, 2019, 19:00pm-22:00pm,

Aletta Jacobshal 02.

Please provide complete arguments for each of your answers. The exam

consists of 3 questions. You can score up to 9 points for each question, and you

obtain 2 points for free.

In this way you will score in total between 2 and 20 points.

- (1) For every integer $n \ge 0$ we write $a_n := (7 \cdot 10^n 1)/3$. So, for example, $a_0 = 2$ and $a_1 = 23$ and $a_2 = 233$, et cetera.
 - (a) (3 points.) Show that for every $n \ge 0$ the number a_n is an integer, and moreover

$$2 \mid a_n \iff n = 0.$$

- (b) (3 points.) Explain why a_n is not divisible by 42, for all $n \ge 0$.
- (c) (3 points.) Explain why a_n is not divisible by 13, for all $n \ge 0$.
- (2) Given an integer a > 0, put $n := a^2 a + 1$.
 - (a) (3 points.) Show that $\overline{a}^{-1} = \overline{1} \overline{a}$ in $(\mathbb{Z}/n\mathbb{Z})^{\times}$.
 - (b) (3 points.) Show that for every *odd* integer m > 0 it holds that $(a^2 a + 1) | (a^{3m} + 1)$.
 - (c) (3 points.) Now take a = 5, so that n = 21. Find two distinct solutions (x, y) with x, y in $\mathbb{Z}/21\mathbb{Z}$ of the system

$$\begin{cases} \overline{2}x - y &= \overline{6} \\ x + \overline{3}y &= -\overline{4}. \end{cases}$$

SOLUTIONS / GRADING.

(1) (a) a_n is an integer: since $10 \equiv 1 \mod 3$, it follows that $7 \cdot 10^n \equiv 7 \cdot 1^n \mod 3 = 7 \mod 3$ and therefore $7 \cdot 10^n - 1 \mod 3 = 6 \mod 3 = 0 \mod 3$. So $3|7 \cdot 10^n - 1$ and hence $(7 \cdot 10^n - 1)/3$ is an integer.

Other solution: use induction: it is true for n = 0. If for some $n \ge 0$ the number a_n is an integer, then $a_{n+1} = (70 \cdot 10^n - 1)/3 = (63 \cdot 10^n + 7 \cdot 10^n - 1)/3 = 21 \cdot 10^n + a_n$ which, using the induction hypothesis, is also an integer.

Third solution: note that $a_{n+1} = 10a_n + 3$. Since a_0 is an integer, it follows by induction that the other a_n (for n > 0) are integers as well. (ANY OF THESE SOLUTIONS, OR A SIMILAR ONE: 1 POINT)

Note that a_n is even, if and only if $3a_n$ is. Since $3a_n = 7 \cdot 10^n - 1equiv10^n - 1 \mod 2$, and 10^n is even for n > 0 and odd for n = 0, the result follows.

Alternative solution: using $a_{n+1} = 10a_n + 3$ you see that $a_{n+1} \equiv 1 \mod 2$, for every $n \ge 0$. Since a_0 is even, the result follows.

(2 POINTS FOR ANY SOLUTION LIKE THIS)

(b) Since a_n is odd for n > 0, these a_n cannot be multiples of 42. And clearly also a_0 is not divisible by 42.

Alternative solution: if $42|a_n$ then also $42|3a_n = 7 \cdot 10^n - 1$. The latter number is clearly not a multiple of 7, and therefore not a multiple of $42 = 7 \cdot 6$.

Yet another solution: From $a_{n+1} = 10a_n + 3$ one concludes $a_{n+1} \equiv a_n \mod 3$. Hence all $a_n \mod 3$ are equal, namely $2 \mod 3$. In particular they are not divisible by 3, and therefore not by $42 = 3 \cdot 14$.

One more solution: mod 42 note that $10 * 23 + 3 \mod 42 = 233 \mod 42 = 23 \mod 42$. Hence the formula $a_{n+1} = 10a_n + 3$ and $a_1 = 23$ implies $a_n \equiv 23 \mod 42$, for every n > 0. So these a_n are not multiples of 42, and clearly neither is a_0 .

(3 POINTS FOR ANY CORRECT AND COMPLETE SOLUTION) FOR PARTIAL ANSWERS, GIVE POINTS ONLY IF THE AR-GUMENT CLEARLY POINTS IN THE DIRECTION OF A CON-CEIVABLY CORRECT PROOF...

(c) The sequence $a_n \mod 13$ looks like

 $\overline{2}, \overline{10}, \overline{12}, \overline{6}, \overline{11}, \overline{9}, \cdots$

(periodic, with period 6), as one computes, e.g., using the formula $a_{n+1} = 10a_n + 3$. As the residue class 0 mod 13 does not occur, none of the a_n is divisible by 13.

(3 POINTS FOR ANY CORRECT AND COMPLETE SOLUTION)

(2) (a) $(\overline{1} - \overline{a}) \cdot \overline{a} = \overline{a - a^2} = \overline{1}$ (since $n | (a - a^2 - 1))$. This shows that \overline{a} is invertible, with inverse $\overline{1} - \overline{a}$.

(2 POINTS FOR THE CALCULATION, 1 POINT FOR THEN REMARKING THAT INDEED WE HAVE THE CORRECT INVERSE. IN TOTAL 1 POINT FOR ONLY SHOWING CORRECTLY THAT gcd(a, n) = 1. NOTE THAT THIS CAN ALSO BE SOLVED VIA AN APPROPRIATE EXTENDED GCD CALCULATION).

(b) Note that $\overline{a}^3 = \overline{a} \cdot \overline{a^2} = \overline{a} \cdot \overline{a-1} = \overline{a^2 - a} = \overline{-1}$. Hence for odd m > 0 it follows that $\overline{a^3}^m = \overline{-1}^m = \overline{-1}$. This means $a^{3m} + 1$ is divisible by $n = a^2 - a + 1$.

Other solution: note that $a^6 - 1 = (a+1)(a-1)(a^2 + a + 1)(a^2 - a + 1)$. For m = 1 the divisibility holds since $a^3 + 1 = (a+1)(a^2 - a + 1)$. If it holds for some odd m > 0, then the next odd number is m + 2, and $a^{3(m+2)} + 1 = a^6 \cdot a^3m + 1 = (a^6 - 1)a^{3m} + (a^{3m} + 1)$. By what we remarked above and by the induction hypothesis, both terms are divisible by n. This finishes the proof by induction.

(3 POINTS FOR ANY CORRECT AND COMPLETE SOLUTION. ONLY 1 POINT IF, E.G., MERELY THE CASE M=1 IS DONE.)

(c) Substituting either $y = \overline{2}x - \overline{6}$ or $x = -\overline{4} - \overline{3}y$ in the 'other' equation, one is left with, e.g., $x + \overline{3}(\overline{2}x - \overline{6}) = -\overline{4}$. This can be rewritten as $\overline{7}x = \overline{14}$. So we look for integers x such that 21|(7x - 14), which simply means 3|(x - 2). Two solutions are x = 2 and x = 5, with corresponding y respectively -2and 4.

(-1 for a calculation error, -2 if only one solution is found. -1 if it is not clear whether the given solutions are distinct modulo 21)